Math 522 Exam 10 Solutions

1. Prove that $\sum_{r \mid n} \frac{\mu(r)}{d(r)}=2^{-s}$, where s is the number of different primes dividing n, i.e. $n=p_{1}^{a_{1}} p_{2}^{a_{2}} \cdots p_{s}^{a_{s}}$.

Set $G(n)=\sum_{r \mid n} \frac{\mu(r)}{d(r)}$. Note that $\frac{\mu}{d}$ is multiplicative, since both the numerator and denominator are (and the denominator is never zero). Because $G=\frac{\mu}{d} \star 1, G$ is also multiplicative. Hence $G(n)=\prod_{i=1}^{s} G\left(p_{i}^{a_{i}}\right)=\prod_{i=1}^{s}\left(\frac{\mu(1)}{d(1)}+\frac{\mu\left(p_{i}\right)}{d\left(p_{i}\right)}+\frac{\mu\left(p_{i}^{2}\right)}{d\left(p_{i}^{2}\right)}+\cdots\right)=$ $\prod_{i=1}^{s}\left(\frac{1}{1}+\frac{-1}{2}+0+\cdots\right)=\prod_{i=1}^{s}\left(\frac{1}{2}\right)=2^{-s}$.

The number of different primes dividing n is called $\omega(n)$, which is interesting in its own right. This is an additive function (not multiplicative); however exponentiating an additive function makes a multiplicative function.
2. Prove that $d^{-1}=\mu \star \mu$. Compute $d^{-1}(27)$, either using this fact or recursively.

We begin with $1 \star 1=d$, and multiply both sides by $d^{-1} \star \mu \star \mu$ to get $d^{-1} \star \mu \star \mu \star 1 \star 1=d \star d^{-1} \star \mu \star \mu$. This simplifies to $d^{-1}=\mu \star \mu$, because $d \star d^{-1}=I=1 \star \mu$ and \star is commutative and associative.

Using this fact, $(\mu \star \mu)(27)=\sum_{d e=27} \mu(d) \mu(e)=\mu(1) \mu(27)+$ $\mu(3) \mu(9)+\mu(9) \mu(3)+\mu(27) \mu(1)=0$, since $\mu(27)=\mu(9)=0$.

Recursively, we calculate $d^{-1}(3), d^{-1}(9), d^{-1}(27)$.
$d^{-1}(3)=-\sum_{r \mid 3, r<3} d\left(\frac{3}{r}\right) d^{-1}(r)=-d(3) d^{-1}(1)=-2$.
$d^{-1}(9)=-\left(d(9) d^{-1}(1)+d(3) d^{-1}(3)\right)=-(3-4)=1$.
$d^{-1}(27)=-\left(d(27) d^{-1}(1)+d(9) d^{-1}(3)+d(3) d^{-1}(9)\right)=$ $-(4-6+2)=0$.

